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NOTE 

New Physical Criteria for Using Linear Artificial Viscosity 

Artificial viscosity [Q] has been used for over 40 years 
[ 11 to simulate numerically the propagation of waves in a 
discretized continuum. It is composed typically of terms 
that are quadratic and linear in the gradient of the particle 
velocity, and “switches” (numerical representations of 
physical criteria) for turning the terms on and ojj? The 
quadratic term is active only in the region of a sharp 
discontinuity, e.g., a shock, where the velocity gradient 
is large, and spreads (smooths) the discontinuity over 
a few computational zones, or a tixed length. The linear 
Q was introduced to damp numerical noise, but it is 
active throughout the mesh. Consequently, it can be very 
dissipative. 

We are interested in simulating the propagation of elastic 
waves, for which only the linear Q is important. The disper- 
sion and attenuation due to the linear Q can dominate the 
character of the wave propagation [2]. Therefore, an 
analytic solution is necessary to assess the quality of various 
Q-formulations. Blake [ 31 obtained an analytic solution for 
the propagation of a spherical wave driven by an exponen- 
tially decaying pressure applied to the inside surface of a 
hollow elastic sphere. This is an ideal problem for com- 
paring different formulations of the linear Q. Its physical 
characteristics are quite similar to waves generated by 
underground explosions; thus, the Blake solution is relevant 
to many real applications. 

We will show that Blake’s analytic solution can be 
approximated numerically very well, using a standard 
tensor linear-Q. The key improvement we make is a new 
formulation of the switch that turns the Q on and off, 
which is in contrast to most of the previous work which has 
focussed on altering only the functional form of the artificial 
viscosity. Our improvement requires little additional 
computational overhead beyond incorporating the tensor 
linear Q and, thus, is very fast computationally. 

The linear Q used in many hydrocodes may be expressed 
as 

(1) 
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where vbj are components of the velocity gradient 
(V/c,k = V . v), r~ is a function of the local sound speed, the 
zone size, and the density, and a is a user-specified multi- 
plicative constant. The right side of Eq. (1) is a decomposi- 
tion of the viscosity into deviatoric (primed) and scalar 
components (6, is the Kronecker delta). The deviatoric 
term is ignored often, so that only a scalar Q remains. 
Although a scalar Q is line for hydrodynamic waves, the 
tensor form is more appropriate for damping oscillations in 
elastic waves, which can have large deviatoric components. 

The typical switch used with Eq. (1) is Q, on if V. v c 0, 
i.e., if the material is compressing volumetrically. Our 
“modified” formulation of the linear Q, which we denote as 
Q “‘, is obtained by specifying a new switching function for 
Eq. (1). We write 

Q; = wvi,j[f, +fJ> (24 
fi = max[sgn[ -cJ~v~,~], 01, (2b) 

f,=max sgn at2 [ [” (-(igvi,j)]T O]> PC) 

where (TV are the components of the stress tensor (com- 
pressive stresses are negative), and sgn(x) = 1 if x > 0, - 1 if 
x < 0, or 0 if x = 0. Thus, fi and f2 equal 0 or 1. The scalar 
otivi,j is the power per unit volume, so that fi and fi have 
simple physical interpretations. The second temporal partial 
derivative in fi is calculated by differencing stored values of 
the power per unit volume. Figure 1 shows schematically 
the hypothetical response of a computational mesh to the 
passage of a uniaxial strain wave. Particle velocity is plotted 
as a function of distance. The dashed line is an idealized 
solution for a propagating step wave (compressive or ten- 
sile). The solid line is the oscillatory response that would be 
expected from a numerical solution without Q. The figure 
also shows the regions of the wavefront in which fi and f2 
would be active initially. fi is active for compressed regions 
that are expanding, or for expanded regions that are com- 
pressing. fi is activated initially only after the peak of the 
wave; consequently, it does not damp the initial overshoot. 
f2 damps the overshoot, because it is constructed from the 
second derivative of the power per unit volume, so that it 
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FIG. 1. Schematic response of a computational mesh to the passage of 

a uniaxial strain wave. The particle velocity is plotted as a function of 
distance, for the hypothetical numeric (solid line) and exact (dashed line) 
solutions. The regions are shown wheref, andf, are active initially. 

“anticipates” the overshoot. The figure shows that f2 is 
activated initially at the midpoint of the wavefront. 
Although f2 is defined by a temporal derivative, we have 
used the approximation a/at + c(a/ax), where c N cL 
(longitudinal sound speed), to compare and contrast in the 
same figure the regions of initial activity of fl and fi. 

Equations (2) were added to DYNA2D [4, 51, which is 
a 2D Lagrangian hydrocode. The Blake problem was 
modelled using a spherical 1D mesh with 100 radial 0.2m 
thick zones. The driving pressure, P, on the inner surface, 
which was at a radius of lOm, was P(GPa) = 0.1 
exp[ - lOOOr], where t is the time in seconds. The density, 
bulk modulus, and shear modulus of the elastic material 
were 2000kg/m3, 36(GPa), and 12S(GPa). The resulting 
longitudinal sound speed, cL, is 5.13m/ms. Figures 2-5 
show the velocity profile at 3ms for the analytic solution 
(dashed line) and four formulations of the linear Q (solid 
line) listed in Table I. Figures 2 and 3 show the results of 
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FIG. 2. Velocity as a function of distance at 3ms for the analytic 
(dashed) and the numeric (solid) solutions. The multiplicative constant, a, 
is 0.015. 
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FIG. 3. Velocity as a function of distance at 3ms for the analytic 

(dashed) and the numeric (solid) solutions. The multiplicative constant, a, 
is 0.013. 

simulations based on variations of Eq. (1). Figure 4 shows 
results obtained using one formulation of a flux-limited 
viscosity [6], which replaces the velocity gradient in Eq. (1) 
with a specially computed velocity difference. Figure 5 
shows results obtained using Qm [Eq. (2)]. For each of the 
four cases, the value of the multiplicative coefficient, a, was 
chosen so that the calculated peak velocity would equal the 
analytic peak velocity. The value of a is larger for Qm than 
for the other forms based on Eq. (l), because it is on less 
often than those forms. The functional form of the 
flux-limited viscosity differs from Eqs. (1 ), (2), so values of 
a cannot be compared. When an analytic solution is not 
available, Q is chosen (somewhat subjectively) as small as 
possible, to minimize oscillations, while maximizing peak 
amplitudes. 

The scalar and tensor viscosities shown in Figs. 2 and 3 
do not damp fully the oscillations behind the peak. The 
numerical results shown in Figs. 2 and 3 are improved 
slightly if the Q is always on, instead of on only in compres- 
sion. However, leaving the Q always on introduces too 
much dissipation, for most realistic problems. This is why 
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FIG. 4. Velocity as a function of distance at 3ms for the analytic 
(dashed) and the numeric (solid) solutions. The multiplicative constant, a, 
is 0.09. 
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switches. Qm produced results that exceeded those results in 
every case. 

The purpose of this note was to demonstrate that the 
accuracy of numerical simulations of wave propagation that 
use linear artilicial viscosity can be improved significantly 
by altering the traditional activation criteria for the 
viscosity. Our activation criteria are based on the power per 
unit volume and can be incorporated easily into 1, 2, and 
3D hydrocodes. 

The authors thank M. Rubin for pointing out that our 
original activation criteria could be expressed as a tensor 
invariant and J. Levatin for computational support. The 
authors also thank P. Eltgroth and D. Burton for reviewing 
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FIG. 5. Velocity as a function of distance at 3ms for the analytic 
this work prior to publication and making many construc- 

(dashed) and the numeric (solid) solutions. The multiplicative constant, a, tive suggestions. This work was performed under the 
is 0.032. auspices of the U.S. Department of Energy by Lawrence 

Livermore National Laboratory under Contract No. 

the compression-only condition has become the “industry W-7405-Eng-48. 

standard.” Figure 4 shows that the flux-limited viscosity 
gives better results than those shown in Figs. 2 and 3, but 
the oscillations are still not damped completely. Figure 5 
shows that the solution using the modified Q is nearly free 

1, 

of oscillations and more closely approximates the analytic 
2 

solution than the other cases. In addition, we examined 
3: 

several other test problems, other forms of Q, and other 4. 

5. 
TABLE I 
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